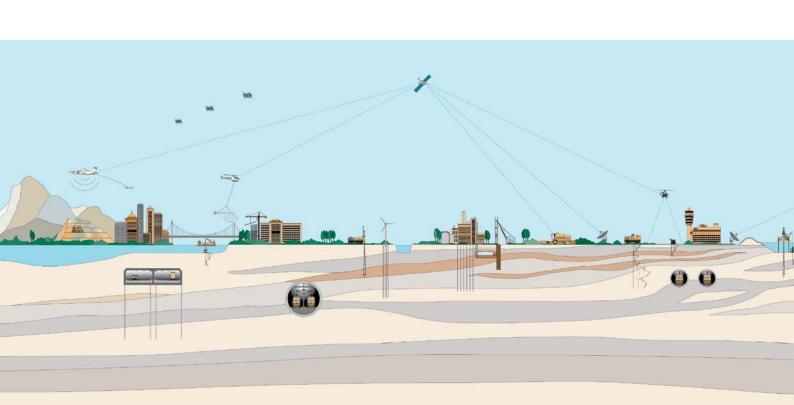


FUGRO ENGINEERING SERVICES LIMITED

AIRTRICITY HOLDINGS LIMITED


VIKING WIND FARM PEAT STABILITY ASSESSMENT

DRAFT FACTUAL REPORT ON GROUND INVESTIGATION

CONTRACT NO : CON083141

DATE: JANUARY 2009

CONFIDENTIAL

FUGRO ENGINEERING SERVICES LIMITED

AIRTIRICITY HOLDINGS LIMITED

VIKING WIND FARM PEAT STABILITY ASSESSMENT

DRAFT FACTUAL REPORT ON **GROUND INVESTIGATION**

CONTRACT NO CON083141

> DATE **JANUARY 2009**

CONFIDENTIAL

REPORT ISSUE STATUS

Issue	Date	Description	Prepared	Checked	Approved (Printed)	Approved (Signature)							
01	20/01/09	Draft Factual	ВС	BC	ND	N. Amiej							
	35	Lyn		ı	1. Javi	4							
		B COOPER		N DAVIES									
	PRING	CIPAL ENGINEER		ENGINEERING MANAGER									

Fugro Engineering Services Limited Armstrong House, Unit 43 Number One Industrial Estate

Consett County Durham, DH8 6TW

1.	INT	RODUCTION	1
2.	THE	SITE AND GEOLOGY	1
	2.1	SITE LOCATION AND DESCRIPTION	1
	2.2	GEOLOGY	1
3.	MET	THOD OF INVESTIGATION	2
	3.1	GENERAL	2
	3.2	FIELD TESTING	2
	3.3	SURVEY	2
	3.4	LIMITATIONS AND USE OF DATA	2
REF	ERE	NCES	4

APPENDIX A Field Test Results

APPENDIX B Drawings

1. INTRODUCTION

On the instructions of Mouchel Limited (the Engineer), acting on behalf of Airtricity Holdings Limited (the Employer), a site investigation has been carried out by Fugro Engineering Services Limited (FES) on the north mainland of Shetland on the site of the proposed Viking Wind Farm.

The objective of the investigation was to provide the Engineer with additional insitu strength properties for use in a peat stability assessment of the site. The scope of the investigation was determined by the Engineer with the agreement of the Employer.

A factual report was requested including field testing records and a site plan. The report has also been provided in .pdf format.

The site work, which comprised insitu field vane testing and peat probing at fifteen locations, was carried out between the 15th December 2008 and the 9th January 2009.

2. THE SITE AND GEOLOGY

2.1 SITE LOCATION AND DESCRIPTION

The site is located across two distinct areas on the northern mainland of Shetland. The southern area extends from Flaminster in the southeast (HU 441 559) to Weisdale in the southwest (HU 383 523) and extends to Hamarigrind Scord (HU 408 608) in the north. The northern area is centered around Duddin Hill (HU 384 669) and Easterscord (HU 420 660) and east of Meadow of Fitchin (HU 404 704).

At the time of the investigation the site comprised heather and grass moorland underlain by varying depths of peat.

2.2 GEOLOGY

The records of the British Geological Survey (GeoIndex Digital Data - 1:625,000 Superficial and Bedrock) indicate that the site is underlain by Peat over Undifferentiated Schist and Gneiss of Shetland and Upper Tyrone.

Further background research such as a desk study was not required within the terms of reference for the work.

3. METHOD OF INVESTIGATION

3.1 GENERAL

Details of the in-situ testing carried out, together with the peat thicknesses encountered, are given on the field records in Appendix A. The investigation was generally carried out in accordance with BS 5930:1999ⁱ, BS EN ISO 14688-1:2002ⁱⁱ and BS EN ISO 14689-1:2003ⁱⁱⁱ as appropriate.

3.2 FIELD TESTING

A total of eighty five field vane tests were carried out at fifteen locations as specified by the Engineer using a Farnell Field Vane. The results, with the vane and dial gauge factors, are given in Table 1 in Appendix A.

The maximum thickness of peat was also determined at each test location by hand probing. The results are given in Table 2 in Appendix A.

3.3 SURVEY

The test locations were set out using the Global Positioning System (GPS) technique with co-ordinates supplied by the Engineer. The ground levels and grid co-ordinates at the test locations were not requested.

Site plans provided by the Engineer showing the approximate positions of the test locations are presented in Figures LP1 and LP2 in Appendix B.

3.4 LIMITATIONS AND USE OF DATA

The scope of the investigation was determined by the Engineer for the particular project requirements set out in the Specification for the Contract. A factual report only was required, without interpretation of the data from the present investigation or consideration of data from other sources, except where noted. The data presented in this report reflects the site conditions encountered at the time the investigation was performed. The investigation has disclosed evidence of conditions at point locations across the site which provides information about discrete volumes of soil or rock. Accordingly, there may be ground conditions at the site which may not have been revealed by the investigation, and the passage of time may give rise to changes in the conditions encountered. Any interpolation or extrapolation of strata from the exploratory holes is subject to the interpretation of the reader. Any cross - sections or plots are generalised by necessity and have been based on information found at the exploratory holes and depths sampled and tested. The records should be read in conjunction with the Notes on Exploratory Hole Records in Appendix A. Particular attention is drawn to the comments made on groundwater and interpretation which are given in these Notes.

The investigation has been carried out by Fugro Engineering Services Limited and the report has been prepared for the sole internal use of Airtricity Holdings Limited. This report shall not be relied upon or transferred to any other parties without the express written authorisation of Fugro Engineering Services Limited. If an unauthorised third party comes into possession of this report they rely upon it at their peril and the authors owe them no duty of care and skill.

It is Fugro Engineering Services Limited's understanding that this report is to be used for the purposes as described in the Specification for the investigation and as summarised in the text of the report. Should the purpose for which the report is used or the proposed use of the site change, this report may no longer be valid. Any further use or reliance upon the report in these circumstances by Airtricity Holdings Limited without further review by and advice from Fugro Engineering Services Limited shall be at their sole and own risk.

REFERENCES

ⁱ BS 5930:1999, Code of practice for site investigations. British Standards Institution.

ⁱⁱ BS EN ISO 14688-1:2002 Geotechnical investigation and testing – Identification and classification of soil – Part 1 Identification and description. British Standards Institution.

ⁱⁱⁱ BS EN ISO 14689-1:2003 Geotechnical investigation and testing – Identification and classification of rock – Part 1 Identification and description. British Standards Institution.

APPENDIX A Field Test Results

Insitu Field Vane Test Results	Table 1
Peat Probe Test Results	Table 2

AIRTRICITY HOLDINGS LIMITED VIKING WIND FARM

Table 1 In-situ Field Vane Test Results

<u>р</u>	13	1 4	33	31	13	72	Ţ	शु	<u>2</u>	98	Ş	श	က္က	<u>[5</u>	53	17	17	72	31	31	75	58	32	<u>[</u>	<u>;[</u>	<u>. [</u>	<u> </u>	- 2	وام	<u> </u>	72	<u></u>	34	77	15	112	22	7.	29	32	25	Ĭ,	2 0	3 5	2 4	75	33
Remoulded Shear (KPa)	3,42513	2.9214344	3.651793	3.5258691	3.42513	3.1229127	7 4070	5.13/095	4.0799343	4.1554886	7001	0.453326	8.9405968	3.9791952	6.0191623	4.3821517	3.8029017	1.6873802	3.0725431	7.0769231	3.1480975	1.939228	2.9466192		5.2888037	7.7569121	7.7569121	7.07.092.31	4.13030	5.7421298	1.4607172	5.01177111	4.1806734	4 7599234	6 1450862	4.0295647	3.9791952	5.3643581	5.6162059	6.145086	4.8606625	3 148097	3 3243909	3 3999453	1.7881194	3.1480975	1.9140433
Peak Shear Shear	33093	9.922803	13.95237	8.915412	8.613195	9.469477	040	42.97076	13.82644	15.11087	000	8.00876	29.41582	16.92417	33.47057	24.88256	23.62332	4.079934	3.274021	23.8248	11.2576	6.950999	9.393923			-	31.40542	12 2/710	13.247.19	17.83082	8.487271	19.59376	23.54777	22 16261	20 32412	14.70791	13.09609	11.81166	12.66794		21.43225	12 51684	_	_	8.109499	4.231043	8.059129
Vane Constant	3	3.653	3.653	3.653	3.653	3.653	0	3.053	3.653	3.653	0	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	(3.653	3.653	3.653	3.033	0.000	3.653	3.653	3.653	3.653	3 653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3 653	3 653	3.653	3.653	3.653
Sensitivity	3.2	3.4	3.8	2.5	2.5	3.0		5.4 5.4	3.4	3.6	177	1.71	3.3	4.3	5.6	2.5	6.2	2.4	1.1	3.4	3.6	3.6	3.2		4.7	3.9	4.0	t c	3.5	3.1	5.8	3.9	9.6	4.7	. m	3.7	3.3	2.2	2.3	3.7	4.4	4.0	3.4	3.7	4.5	1.3	4.2
Remould value	12.5	10.7	13.3	12.9	12.5	11.4	0	2.8	14.9	15.2	1	1.7	32.7	14.5	22.0	16.0	13.9	6.2	11.2	25.9	11.5	7.1	10.8		19.3	28.3	28.3	23.9 1E 1	12.0	21.0	5.3	18.3	15.3	17.4	22.4	14.7	14.5	19.6	20.5	22.4	17.8	11 7	12.1	12.4	6.5	11.5	7.0
Peak Value	40.3	36.2	51.0	32.6	31.5	34.6	0	0.08	50.5	55.2	000	29.3	107.5	61.8	122.3	6'06	£'98	14.9	12.0	0'.28	41.1	25.4	34.3	1	90.5	110.0	114.7	0.70	40.4	65.1	31.0	71.6	0.98	010	74.2	53.7	47.8	43.1	46.3	82.1	78.3	45.7	41.8	45.4	29.6	15.5	29.4
Factor	0.092	0.092	0.092	0.092	0.092	0.092		0.092	0.092	0.092		0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092		0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	CBU U	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0 092	0.092	0.092	0.092	0.092	0.092
Remould	158	121	155	218	138	209	27.2	1.07	210	202		19	3/6	219	281	242	215	109	122	365	204	147	225		262	362	356	203	187	315	29	216	192	256	327	267	254	331	344	418	379	140	214	144	98	128	84
Rod Friction	22	5	10	28	7	92	1	47	48	40	•	L 0	24	61	42	89	64	42	0	84	62	20	108	(52	54	48	107	171	/8	_	17	56	29	83	107	96	118	121	174	186	<u>ተ</u>	82	5 6	15	င	8
Peak Reading	465	403	256	411	364	467	L	375	089	629		320	1210	750	1370	1061	1005	230	130	1043	528	355	494		1042	1242	1282	0401 VZ9	074	ç08	348	785	946	944	879	705	658	588	611	926	923	569	505	519	367	266	342
Rod	27		2				Ĺ	22	41	29	c	7 5	42	78	41	73	29	89	0	26	81	79	121	C I	28	46	35	140	0110	16	11	7	14	64	72	121	138	119	108	64	72	72	5.1	26	45		
Vane Size	200 × 100	200 x 100	000	200 x 100	200 x 100	200 × 100	000	200 × 100	200 × 100	200 × 100	200 x 100	200 × 100	200 x 100	200 x 100	200×100	200 x 100	200 x 100	200 x 100	200 x 100		200 × 100	200 × 100	200 x 100	200 × 100	200 x 100	200 × 100	200 x 100	200 x 100	200 x 100	200 x 100	200 x 100	200 x 100	200 x 100	200×100	200 x 100												
Water Level	00.00	00:00	0.00	0.00	00'0	00.00		0.00	0.00	0.00		0.00	0.00	0.00	0.00	00'0	00'0	00.00	0.00	00.00	00.00	0.00	0.00		0.00	0.00	00.00	00.0	0.00	0.00	0.00	0.00	00.0	00 0	00.0	0.00	0.00	00.00	0.00	00.0	0.00	000	00.0	000	00.00	0.00	0.00
Vane Tip Depth	09.0	09:0	09.0	1.60	1.60	1.60		0.60	09.0	09.0		0.60	0.60	09:0	09.0	09'0	09'0	1.60	1.60	1.60	2.60	2.60	2.60		09.0	09.0	09.0	1.60	00.1	1.60	09.0	09.0	09'0	090	09.0	1.60	1.60	2.60	2.60	3.60	3.60	0.60	09.0	09.0	1.20	1.20	1.20
Casing Depth	n/a	n/a	n/a	n/a	n/a	n/a	,	n/a	n/a	n/a	9, 9	n/a	n/a	n/a	n/a	n/a		n/a	n/a	n/a	ה/ט	ָ בוֹשׁ	n/a	n/a	n/a	n/a	g/u	n/a	n/a	n/a	n/a	n/a	n/a	n/a	e/u	p/u	s/c	n/a	n/a	n/a							
Hole	00.0	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	9	0.00	0.00	0.00	0.00	00'0	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.0	00 0	00.0	00:0	0.00	00.00	0.00	00.0	0.00	000	00.0	00.0	00:0	0.00	0.00
Borehole	1		_	1	1	1		7 0	7	2	c	χ (89	က	4	4	4	4	4	4	4	4	4	ı	2	2	5	ט ע	C I	S	9	9	9	7		7	7	7	7	7	7	α	0 00	0 00	ο &	8	8

Remoulded Shear (kPa)	1.8888585	2.2666302	2.5688475	3.4503148	4.8354777	3.42513	3.6014235	1.032576	4.2058582	7.1021079	12.164249	6.2710101	5.0369559	5.1628798	2.6947714	1	3.7273474	3.3243909	6.7243362	000	8.8650424	9.368/38	5.5154667		3.6266083	2.2162606	2.6695866	3.0473583	3.7021626	3.3999453	14.672414	8.1293103	12.689655	12.491379	12.689655	17.25	5.5658363	5.6413906	8.8902272	5.7421298	5.8428689	9.9137931	13.681034
Peak F Shear S kPa) ((73173					15.0605	13.87681	14.7331						14.2294				4	24.37887				37.37421	>518	14.45606	14.12866	14.07829			12.4161	17.64655				17.25	32.12069							37.07759
Vane Sonstant	3	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	0	3.653	3.053	3.653	0	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	3.653	0.464	0.464	0.464	0.464	0.464	0.464	3.653	3.653	3.653	3.653	3.653	0.464	0.464
Sensitivity		4.3	4.3	4.0	3.5	4.4	3.9	14.3	3.4	3.5	3.9	3.9	2.8	2.8	4.4	1	y. 7	6.01	3.6	,	4.1	4.8	8.9		4.0	6.4	5.3	4.1	3.8	3.7	1.2	1.9	1.5	2.9	1.4	1.9	3.8	3.8	3.3	3.8	3.1	5.2	2.7
Remould value	6.9	8.3	9.4	12.6	17.7	12.5	13.2	3.8	15.4	25.9	44.4	22.9	18.4	18.9	9.8		13.6	12.1	24.6	,	32.4	34.2	20.1		13.2	8.1	8.6	11.1	13.5	12.4	6.8	3.8	6.3	5.8	5.9	8.0	20.3	20.6	32.5	21.0	21.3	4.6	6.3
Peak Value	36.4	35.4	40.0	50.7	62.0	22.0	20.2	53.8	52.9	2.68	173.8	88.8	51.6	52.0	42.9	1	107.5	131.9	89.1	7 007	132.4	164.5	136.5		52.8	51.6	51.4	45.7	51.9	45.4	8.2	7.0	8.7	16.7	8.0	14.9	78.0	78.3	107.5	79.5	65.8	24.1	17.2
Factor	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092		0.092	0.092	0.092		0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092
Remould	130	141	161	194	259	215	242	159	259	379	485	268	295	254	145	C L	150	081	310		380	406	265		169	130	124	204	265	237	128	26	112	129	111	124	232	243	385	322	324	206	245
Rod Friction	22	51	26	22	29	62	66	118	92	97	2	19	92	49	38	ď	7 2	28	43	G	28	34	46		25	42	18	83	118	102	54	38	48	99	47	37	11	19	32	94	92	156	176
Peak Reading	452	456	494	628	236	674	629	707	929	1080	1930	1009	658	630	515		1206	14/0	1035	7	1520	1830	1515	>2100	275	592	218	582	699	589	161	142	169	258	138	224	880	910	1208	954	810	424	698
Rod Friction			69		62			122						65				30					31		1	31			`	96	72	99	74	92	51	62	32	29	39	06	96	162	182
Vane Size	200×100	200 x 100	200 x 100	200 x 100	200 x 100	200×100	200 x 100	200 × 100	200 × 100	200 × 100	200 x 100	200 × 100	200×100	200 x 100	200 × 100		200 × 100	001. X 007	200 x 100	7	200 × 100	200 × 100	200×100	200×100	200 x 100	200 x 100	200 x 100	200 × 100	200×100	200 x 100	100 × 50	100 x 50	100 × 50	100 x 50	100 × 50	100 × 50	200 x 100	200 x 100	200 x 100	200×100	200 x 100	100 x 50	100 x 50
Water Level	00.00	0.00	00.00	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00:00	0	0.00	0.00	0.00	ď	Damp	Damp	Damp	Damp	0.00	0.00	0.00	0.00	00.00	00:00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.00	00.00	0.00	00:00	0.00
Vane Tip Depth	09.0	09.0	09:0	1.60	1.60	1.60	2.60	2.60	2.60	09.0	09.0	0.60	1.60	1.60	1.60		0.60	0.00	09:0		0.60	09:0	0.60	1.60	0.60	09'0	09.0	1.10	1.10	1.10	0.50	0.50	0.50	06.0	06.0	06.0	0.60	09:0	09:0	1.60	1.60	2.30	2.30
Casing Depth	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		n/a	n/a	n/a		n/a ,	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Hole Depth	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		00.00	0.00	0.00	o o	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.80	1.80
Borehole	6	6	6	6	6	6	6	6	6	10	10	10	10	10	10	;		1.1	7	9	71.	12	12	*12	13	13	13	13	13	13	14	14	14	14	14	14	15	15	15	15	15	15	15

*Note: Test attempted on BH12 at 1.60m. Shear vane refused at 2100 divisions.

Input By: MT Checked By: BC Date: 20/01/2009

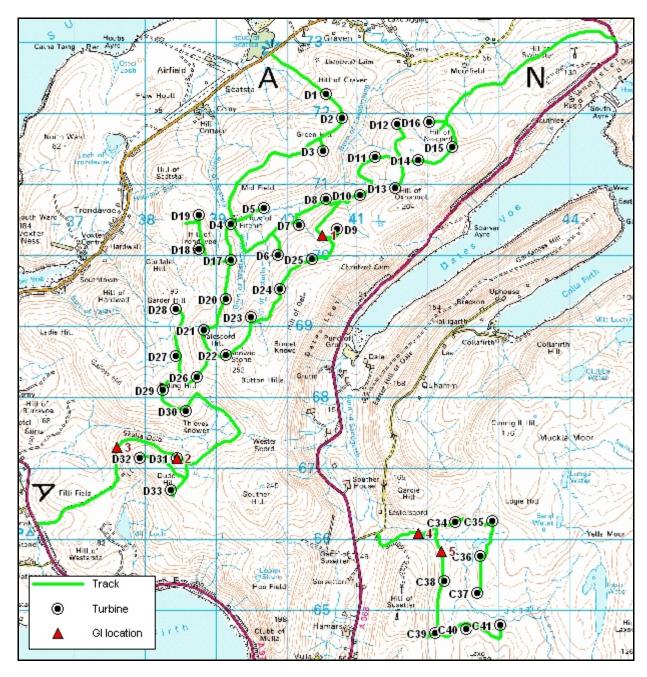
Table 2: Peat Depths

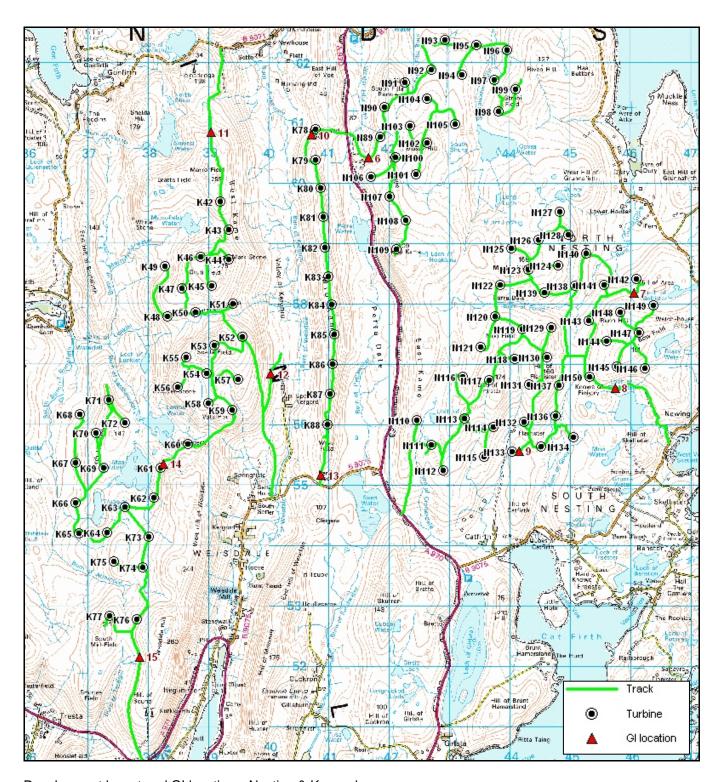
Borehole	Peat Depth (m)
1	1.8
2	1.1
3	0.8
4	3.3
5	1.9
6	1.0
7	3.8
8	1.3
9	2.7
10	2.1
11	0.7
12	2.1
13	1.2
14	1.0
15	2.4

Notes

Maximum peat thicknesses estimated by hand probing. All probes terminated on the basis of refusal. Insitu field vane test results for each position presented separately.

Input By: MT Checked By: BC Date: 20/01/09


CON083141 APPENDIX A


APPENDIX B Drawings

Exploratory Hole Location Plan

Figures LP1 and LP2

Development layout and GI locations, Delting & Collafirth

Development layout and GI locations, Nesting & Kergord