Input data

Note: The input parameters include some variables that can be specified by default values, but others that must be site specific.

Note: <u>Capacity factor</u>. The average capacity factor between 1998 and 2004 for Scotland was 30% (DTL 2006, Energy Trends,

March 2006). We recommend that a site-specific capacity Variables that can be taken from defaults are marked with purple tags on left hand side. factor site should be used (as measured during planning stage). However, if this is unknown, the best (34%) and worst case capacity factors for Scotland (27%) should be used to determine the likely range of the results . Uncertanities Record comments or Input data assumptions here Min Мах Enter your values here Wind farm characteristics Note: Extra capaticity required for backup. If 20% of national electricity is generated by wind energy, the extra Dimensions capacity required for backup is 5% of the rated capacity of 150 No. of turbines the wind plant (Dale et al 2004, Energy Policy, 32, 1949-56). We Life time of wind farm (vears) 25 suggest this should be 5% of the actual output. If it is Performance assumed that less than 20% of national electricity is Turbine capacity (MW) 3.6 20 30 generated by wind energy, a lower percentage should be optorod (0%) Capacity factor (percentage efficiency) 45 27 34 Note: Extra emissions due to reduced thermal efficiency of Backup the reserve power generation $\approx 10\%$ (Dale et al 2004, Energy Extra capacity required for backup (%) Policy, 32, 1949-56) Additional emissions due to reduced thermal efficiency of the Note: Emissions from turbine life. Note, if total emissions for reserve generation (%) the windfarm are unknown, emissions will be calculated Carbon dioxide emissions from turbine life -(eg. Calculate wrt installed capacity according to turbine capacity. The normal range of CO₂ manufacture, construction, decommissioning) emissions is 394 to 8147 t CO₂ MW (White & Kulcinski, 2000. Total CO₂ emission from turbine life (tCO₂ wind farm⁻¹) Fusion Eng. Des. 48, 473-48; White, 2007, Natural Resources Research. 15, 271 - 281.) (if known use direct input of emissions from turbine life) Characteristics of peatland before wind farm Note: A fen is a type of wetland fed by surface and/or development groundwater. A bog is fed primarily by rainwater and often inhabited by sphagnum moss, making it acidic. Type of peatland Acid boa T Note: Time required for regeneration of previous habitat. It Average air temperature at site (°C) is suggested that loss of fixation should be assumed to be Average depth of peat at site (m) 1.60 over lifetime of windfarm only. C Content of drv peat (% by weight) 55 From MLURI (1991) This time could longer if plants do not regenerate. The Average extent of drainage around drainage features at site requirements for after-use planning include the provision of 50 suitable refugia for peat forming vegetation, the removal of (m) structures, or an assessment of the impact of leaving them Average water table depth at site (m) 0.75 in situ. Methods used to reinstatement the site will affect to 0.60 Dry soil bulk density (a cm⁻³) likely time for regeneration of the previous habitat. Average soil pH 4.0 This time could also be shorter if plants regenerate Characteristics of bog plants during lifetime of windfarm. If so, enter number of years estimated for regeneration. Time required for regeneration of bog plants after restoration 10 4 (vears) Carbon accumulation due to C fixation by bog plants in Note: Carbon fixation by bog plants. Apparent C 0.25 👞 0.12 0.31 undrained peats (tC ha⁻¹ vr⁻¹) accumulation rate in peatland is 0.12 to 0.31 tC ha⁻¹ yr⁻¹ **Forestry Plantation Characteristics** (Turunen et al., 2001, Global Biogeochemical Cycles, 15, 285-296; Botch et Area of forestry plantation to be felled (ha) 0 🔨 al., 1995, Global Biogeochemical Cycles, 9, 37-46). The SNH guidance uses a value of 0.25 tC ha⁻¹ yr⁻¹. 0.00 🔨 Average rate of carbon sequesteration in timber (tC ha⁻¹ yr⁻¹) Counterfactual emission factors Note: Area of forestry plantation to be felled. If the forestry

Input data

Coal-fired plant emission factor (t CO2 MWh ⁻¹) Grid-mix emission factor (t CO2 MWh ⁻¹) Fossil fuel- mix emission factor (t CO2 MWh ⁻¹) Borrow pits Number of borrow pits Average length of pits (m) Average depth of peat removed from pit (m)	0.86 0.43 0.607 14 97 126 1.60				was planned to be removed, with no further rotations planted, before the wind farm development, the area to be felled should be entered as zero. Note: <u>Plantation carbon sequestration</u> . This is dependent
Fossil fuel- mix emission factor (t CO2 MWh ⁻¹) Borrow pits Number of borrow pits Average length of pits (m) Average width of pits (m) Average depth of peat removed from pit (m)	0.607 v 14 97 126				felled should be entered as zero. Note: <u>Plantation carbon sequestration</u> . This is dependent
Borrow pits Number of borrow pits Average length of pits (m) Average width of pits (m) Average depth of peat removed from pit (m)	14 97 126			_	Note: <u>Plantation carbon sequestration</u> . This is dependent
Borrow pits Number of borrow pits Average length of pits (m) Average width of pits (m) Average depth of peat removed from pit (m)	14 97 126		\backslash		
Number of borrow pits Average length of pits (m) Average width of pits (m) Average depth of peat removed from pit (m)	97 126				on the yield class of the forestry. The SNH technical
Average width of pits (m) Average depth of peat removed from pit (m)	126	\setminus \setminus \setminus			guidance assumed yield class of 16 m ³ ha ⁻¹ y ⁻¹ , compared
Average depth of peat removed from pit (m)					to the value of 14 m ³ ha ⁻¹ y ⁻¹ provided by the Forestry
	1.60				Commission. Carbon sequestered for yield class 16 m ³ ha
	1.00				¹ y ⁻¹ = 3.6 tC ha ⁻¹ yr ⁻¹ (Cannell, 1999, Forestry, 72, 238-247)
Wind turbine foundations			\langle		
Average length of turbine foundations (m)	25		\backslash	\searrow	Note: Coal-Fired Plant and Grid Mix Emission Factors. Coal-
Average width of turbine foundations(m)	25		\sim	$\overline{}$	fired plant EF = $0.86 \text{ t CO}_2 \text{ MWh}^{-1}$; Grid-Mix EF = 0.43 t CO_2
Average depth of peat removed from turbine foundations(m)	1.6			\searrow	MWh ^{-1.} Source = DEFRA, 2002. Guidelines for the measurement and reporting of emissions by Direct Participants in UK Emissions Trading Scheme (DEFRA,Oct 2002)
Hard-standing area associated with each turbine					Note: Fossil Fuel Mix Emission Factor. The 5 year average
Average length of hard-standing (m)	43.06				emission factor calculated using estimated CO2 emissions
Average width of hard-standing (m)	43.06				for 2002 and 2003 from the National Atmospheric Emission Inventory (Baggott et al, 2007, http://www.naei.org.uk/reports.php. Report
Average depth of peat removed from hard-standing (m)	1.6				AEAT/ENV/R/2429 13/04/2007) and for 2004 to 2006 (Digest of UK
Access tracks					Energy Statistics ,2007, http://www.berr.gov.uk/energy/statistics/source/
Total length of access track (m)	117520				electricity/page18527.html) is 0.607 tCO ₂ MWh ⁻¹
Existing track length (m)	0				
Length of access track that is floating road (m)	86010				Note: Total length of access track. If areas of access track
Floating road width (m)	9.25				overlap with hardstanding area, exclude these from the
Floating road depth (m)	0.5				total length of access track to avoid double counting of land
Length of floating road that is drained (m) Average depth of drains associated with floating roads (m)	43005 0.5				area lost.
Length of access track that is excavated road (m)	31510				
Excavated road width (m)	9.25				
Excavated road depth (m)	1				Nata Daal filled woods. Daaly filled woods own one wood to
Length of access track that is rock filled road (m)	0 -				Note: <u>Rock filled roads.</u> Rock filled roads are assumed to be roads where no peat has been removed and rock has
Rock-filled road width (m)	0				been placed on the surface and allowed to settle.
Rock-filled road depth (m)	Ő				
Length of rock-filled road that is drained (m)	Õ				
Average depth of drains associated with rock-filled roads (m)	0				
Cable Trenches					
Length of any cable trench that does not follow access tracks					
and is lined with a permeable medium (eg. sand) (m)	5876				
Depth of cable trench (m)	0.5				Note: Peat Landslide Hazard. It is assumed that measures have been taken to may limit damage (Scottish Executive, 2006,
Peat Landslide Hazard	€				Peat Landslide Hazard and Risk Assessments. Best Practice Guide for
Weblink: Peat Landslide Hazard and Risk Assessments: Best					Proposed Electricity Generation Developments. Scottish Executive, Edinburgh. pp. 34-35) so that C losses due to peat landslide can
Practice Guide for Proposed Electricity Generation	0				be assumed to be negligible. Link:
Developments	•				http://www.scotland.gov.uk/Publications/2006/12/21162303/1

Improvement of C sequestration at site by blocking drains, restoration of habitat etc			
Improvement of degraded bog			
Area of degraded bog to be improved (ha)	394		
Water table depth in degraded bog before improvement (m)	0.75		
Water table depth in degraded bog after improvement (m)	0.75		
Time required for hydrology and habitat of bog to return to its	10		
previous state on improvement (years)	10		
Improvement of felled plantation land			
Area of felled plantation to be improved (ha)	0		
Water table depth in felled area before improvement (m)	0.00		
Water table depth in felled area after improvement (m)	0.00		
Time required for hydrology and habitat of felled plantation to	0		
return to its previous state on improvement (years)	0		
Restoration of peat removed from borrow pits			
Area of borrow pits to be restored (ha)	15.19		
Water table depth in borrow pit after restoration (m)	0.75		
Time required for hydrology and habitat of borrow pit to return	10		
to its previous state on restoration (years)	10		
Removal of drainage from foundations and hardstanding			
Water table depth around foundations and hardstanding after	0.75		
restoration (m)	0.10		
Time to completion of backfilling, removal of any surface	25		
drains, and full restoration of the hydrology (years)			Note: <u>Restoration of site</u> . If the water table at the site is
Restoration of site after decomissioning	•		 returned to its original level or higher on decomissioning and habitat at the site is restored, it is assumed that C
Will the hydrology of the site be restored on	Yes 🔻		losses continue only over the lifetime of the windfarm.
decommissioning?	Tes 🗸		Otherwise, C losses from drained peat are assumed to l
Will the habitat of the site be restored on decommissioning?	Yes 🔻		100%
		 •	 Note: Choice of methodology for calculating emission factors. The IPPC default methodology is the internatior
Choice of methodology for calculating emission factors	Site specific 🔻 🖛		accepted standard (IPCC, 1997, Revised 1996 IPCC guidelines for
, , , , , , , , , , , , , , , , , , ,			national greenhouse gas inventories, Vol 3, table 5-13). However, it i
			stated in IPCC (1997) that these are rough estimates, a
			"these rates and production periods can be used if
			countries do not have more

appropriate estimates". Therefore, we have developed more site specific estimates for use here based on work from the SEERAD funded ECOSSE project (smith et al, 2007. ECOSSE: Estimating Carbon in Organic Soils - Sequestration and Emissions. Final Report. SEERAD Report. ISBN 978 0 7559 1498 2. 166pp.)

Note: The carbon payback time of the wind farm is calculated by comparing the loss of C from the site due to windfarm development with the carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or Grid-mix.

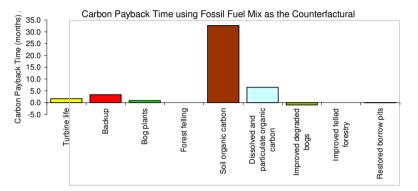
1. Wind farm CO₂ emission saving

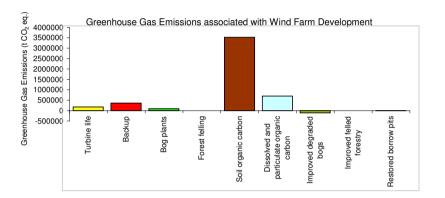
	Carbon dioxide
	saving (tCO ₂ yr ⁻¹)
coal-fired electricity generation	1830665
grid-mix of electricity generation	915332
fossil fuel-mix of electricity generation	1292109

Total CO₂ losses due to wind farm

	Carbo	n dioxide losses (t	CO _{2 eq.})	Pa	ayback time (mont	hs)
	coal-fired electricity generation	grid-mix of electricity generation	fossil fuel-mix of electricity generation	coal-fired electricity generation	grid-mix of electricity generation	fossil fuel-mix of electricity generation
 Losses due to turbine life (eg. manufacture, construction, decomissioning) 	175140	175140	175140	1.1	2.3	1.6
3. Losses due to backup	358919	358919	358919	2.4	4.7	3.3
 Losses due to reduced carbon fixing potential 	90366	90366	90366	0.6	1.2	0.8
5. Losses from soil organic matter	3520798	3520798	3520798	23.1	46.2	32.7
6. Losses due to DOC & POC leaching	696821	696821	696821	4.6	9.1	6.5
7. Losses due to felling forestry	0	0	0	0.0	0.0	0.0
Total losses of carbon dioxide	4842043	4842043	4842043	31.7	63.5	45.0

Total CO₂ gains due to improvement of site

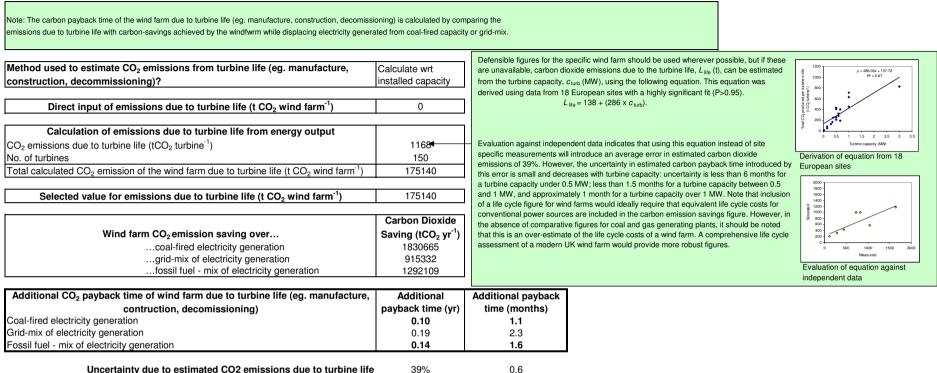

	Carbon dioxide gains (tCO _{2 eq.})	Reduc	tion in payback time	(months)
		coal-fired electricity generation	grid-mix of electricity generation	fossil fuel-mix of electricity generation
8. Gains due to improvement of degraded bogs	106687	0.7	1.4	1.0
 B. Gains due to improvement of felled forestry B. Gains due to restoration of peat from 	0	0.0	0.0	0.0
borrow pits 8. Gains due to removal of drainage from	7529	0.0	0.1	0.1
foundations & hardstanding	0	0.0	0.0	0.0
Total gains	114216	0.7	1.5	1.1


Net emissions of carbon dioxide	(t	
CO _{2 eq} .)		4727827

Payback time

Payback Time

	Total payback time of windfarm (yr)	Total payback time of windfarm (months)
Coal-fired	2.6	31
Grid-mix	5.2	62
Fossil fuel-mix	3.7	44


Note: The total emission savings are given by estimating the total possible electrical output of the windfarm multiplied by the emission factor for the counterfactual case (coal-fire generation and electricity from grid)

Power Generation Characteristics	
No. of turbines	150
Turbine capacity (MW)	3.6
Power of wind farm (MW)	540
Capacity factor (percentage efficiency)	45
Annual energy output from wind farm (MWh yr ⁻¹)	2128680

Counterfactual emission factors	
Coal-fired plant emission factor (t CO ₂ MWh ⁻¹)	0.86
Grid-mix emission factor (t CO ₂ MWh ⁻¹)	0.43
Fossil fuel- mix emission factor (t CO2 MWh ⁻¹)	0.607

	Carbon Dioxide Saving (tCO ₂
Wind farm CO ₂ emission saving over	yr ⁻¹)
coal-fired electricity generation	1830665
grid-mix of electricity generation	915332
fossil fuel - mix of electricity generation	1292109

2. CO2 loss due to turbine life

Uncertainty due to estimated CO2 emissions due to turbine life

0.6

Note: CO2 loss due to back up is calculated from the extra capacity required for backup of the wind farm given in the input data.

Reserve capacity required for backup	
No. of turbines	150
Turbine capacity (MW)	3.6
Power of wind farm (MW h ⁻¹)	540
Rated capacity (MW yr-1)	4730400
Extra capacity required for backup (%)	5
Additional emissions due to reduced thermal	
efficiency of the reserve generation (%)	10
Reserve capacity (MWh yr ⁻¹)	23652

Carbon dioxide emissions due to backup power generation Coal-fired plant emission factor (t CO ₂ MWh ⁻¹)	0.86]
Grid-mix emission factor (t CO_2 MWh ⁻¹)	0.43	
Fossil fuel- mix emission factor (t CO ₂ MWh ⁻¹)	0.607	
Life time of wind farm (years)	25	
Annual emissions due to backup from coal-fired electricity generation grid-mix of electricity generation	20340.72 10170.36	
fossil fuel - mix of electricity generation	14356.764	Assumption: Backup assumed to be
Total emissions due to backup from coal-fired electricity generation grid-mix of electricity generation	508518 254259	by fossil-fuel-mix of electricity generation. Note that hydroelectricity may also be used for backup, so this assumption may make the value for
fossil fuel - mix of electricity generation	358919	backup generation too high. These assumptions should be revisited as
	11	technology develops.
Wind farm CO ₂ emission saving over	Carbon Dioxide Saving (tCO ₂ yr ⁻¹)	
coal-fired electricity generation	1830665	
grid-mix of electricity generation fossil fuel - mix of electricity generation	915332 1292109	

Additional CO ₂ payback time of wind farm due to backup	Additional payback time (yr)	Additional payback time (months)
Coal-fired electricity generation	0.20	2.4
Grid-mix of electricity generation	0.39	4.7
Fossil fuel-mix of electricity generation	0.28	3.3

Note: Annual C fixation by the site is calculated by multiplying area of the wind farm by the annual C accumulation due to bog plant fixation

Area where carbon accumulation by bog plants is lostTotal area of land lost due to wind farm construction (m²)Total area affected by drainage due to wind farm construction (m²)Total area where fixation by plants is lost (m²)	1630043 26533296 28163339	Assumptions: 1. Bog plants are 100% lost from the area where peat is removed for construction. 2. Bog plants are 100% lost from the
Total loss of carbon accumulation Carbon accumulation in undrained peats (tC ha ⁻¹ yr ⁻¹) Life time of wind farm (years)	0.25 25	area where peat is drained. 3. The recovery of carbon accumulation by plants on restoration of land is as given in inputs
Time required for regeneration of bog plants after restoration (years)	10	
Carbon accumulation up to time of restoration (tCO ₂ eq. ha^{-1})	32	

Total loss of carbon accumulation by bog plants	
Total area where fixation by plants is lost (ha)	2816
Carbon accumulation over lifetime of wind farm (tCO ₂ eq. ha ⁻¹)	32
Total loss of carbon fixation by plants at the site (t CO ₂)	90366

Windfarm CO ₂ emission saving over	Carbon Dioxide Saving (tCO ₂ yr ⁻¹)
coal-fired electricity generation	1830665
grid-mix of electricity generation	915332
fossil fuel - mix of electricity generation	1292109

Additional CO ₂ payback time of windfarm due to loss of CO ₂ fixation	Additional payback time (years)	Additional payback time (months)
Coal-fired electricity generation	0.049	0.6
Grid-mix of electricity generation	0.099	1.2
Fossil fuel - mix of electricity generation	0.070	0.8

Note: Loss of C stored in peatland is estimated from % site lost by peat removal (sheet 5a), CO₂ loss from removed peat (sheet 5b), % site affected by drainage (sheet 5c), and the CO2 loss from drained peat (sheet 5d).

CO ₂ loss due to wind farm construction		
CO ₂ loss from removed peat (t CO ₂ equiv)	1885395	
CO_2 loss from drained peat (t CO_2 equiv) 16354		
Total CO2 loss from peat (removed+ drained) (t CO2 equiv) 3520798		

Note: % site lost by peat removal is estimated from peat removed in borrow pits, turbine foundations, hard-standing and access tracks. If peat is removed for any other reason, this must be added in to the volume of peat removed, area of land lost and % site lost at the bottom of this worksheet.

Peat removed from borrow pits	
Number of borrow pits	14
Average length of pits (m)	97
Average width of pits (m)	126
Average depth of peat removed from pit (m)	1.6
Area of land lost in borrow pits (m ²)	171108
Volume of peat removed from borrow pits (m ³)	273772.8
Peat removed from turbine foundations	
No. of turbines	150
Average length of turbine foundations (m)	25
Average width of turbine foundations(m)	25
Average depth of peat removed from turbine foundations(m)	1.6
Area of land lost in foundations (m ²)	93750
Volume of peat removed from foundation area (m ³)	150000
	100000
Peat removed from hard-standing	
No. of turbines	150
Average length of hard-standing (m)	43.06
Average width of hard-standing (m)	43.06
Average depth of peat removed from hard-standing (m)	1.6
Area of land lost in hard-standing (m ²)	278124.54
Volume of peat removed from hardstandingarea (m ³)	444999.264
Destances of form second baselo	1
Peat removed from access tracks	
Floating roads	86010
Length of access track that is floating road (m) Floating road width (m)	9.25
o ()	9.25
Floating road depth (m)	795592.5
Area of land lost in floating roads (m ²)	795592.5 397796.25
Volume of peat removed for floating roads Excavated roads	397796.20
Length of access track that is excavated road (m)	31510
Excavated road width (m)	9.25
Excavated road depth (m)	1
Area of land lost in excavated roads (m ²)	291467.5
Volume of peat removed for excavated roads	291467.5
Rock-filled roads	291407.0
Length of access track that is rock filled road (m)	0
Rock-filled road width (m)	0
Rock-filled road depth (m)	0 0
Area of land lost in excavated roads (m ²)	0
Volume of peat removed for rock-filled roads	0
Total area of land lost in access tracks (m ²)	1087060
Total volume of peat removed due to access tracks (m ³)	689263.75
	0002000
Total volume of peat removed (m ³) due to wind farm construction	1558035.814
Total area of land lost due to wind farm construction (m ²)	1630042.54
	1030042.34

Note: If peat is treated in such a way that it is permanently restored, so that less than entered in cell C10	100% of the C is lost to the atmos	sphere, a lower percentage can be
CO ₂ loss from removed peat C Content of dry peat (% by weight) Dry soil bulk density (g cm ³) % C contained in removed peat that is lost as CO ₂ Total volume of peat removed (m ³) due to wind farm construction CO ₂ loss from removed peat (t CO ₂)	55 0.60 100 1558035.814 1885395	Assumption: If peat is not restored, 100% of the carbon contained in the removed peat is lost as CO ₂
CO_2 loss from undrained peat left in situ Total area of land lost due to wind farm construction (ha) CO_2 loss from undrained peat left in situ (t CO_2 ha ⁻¹) CO_2 loss from undrained peat left in situ (t CO_2)	163 32 5205	
CO ₂ loss attributable to peat removal only CO ₂ loss from removed peat (t CO ₂) CO ₂ loss from undrained peat left in situ (t CO ₂) CO ₂ loss attributable to peat removal only (t CO ₂)	1885395 5205 1880190	
Wind farm CO ₂ emission saving over coal-fired electricity generation grid-mix of electricity generation fossil fuel - mix of electricity generation	Carbon Dioxide Saving (tCO ₂ yr ⁻¹) 1830665 915332 1292109	
Additional CO ₂ payback time of wind farm due to removal of peat during construction Coal-fired electricity generation Grid-mix of electricity generation Fossil fuel - mix of electricity generation	Additional payback time (years) 1.03 2.06 1.46	Additional payback time (months) 12.4 24.7 17.5

Note: Extent of site affected by drainage is calculated assuming an average extent of drainage around each drainage feature as given in the input data.

Average extent of drainage around drainage features at site (m)	50	
Peat affected by drainage around borrow pits		
Number of borrow pits	14	
Average length of pits (m)	97	
Average width of pits (m)	126	
Average depth of peat removed from pit (m)	1.6	Note: Borrow pit area itself not counte
Area affected by drainage per borrow pit	32300	 in drained area because C losses hav
Total area affected by drainage around borrowpits (m ²)	452200	already been accounted for in remove peat
Total volume affected by drainage around borrowpits (m ³)	723520	P
Peat affected by drainage around turbine foundation and hardstanding		 Assumption: Depth peat affected due
No. of turbines	150	 of drainage is equal to the depth of peat removed
Average length of turbine foundations (m)	25	peartemeted
Average width of turbine foundations (m)	25	
Average depth of peat removed from turbine foundations(m)	2	
Average length of hard-standing (m)	43	
Average width of hard-standing (m)	43	
Average depth of peat removed from hard-standing (m)	1.6	Note: Hardstanding and turbine
Fotal length of foundation and hardstaning area (m)	68	foundations. These are counted
Fotal width of foundation and hardstanding area (m)	68	together to avoid double counting of
Area affected by drainage of foundation and hardstanding area (m ²)	23612	edges. If hardstanding is sited away
Fotal area affected by drainage of foundation and hardstanding area (m ²)	3541800	from turbine foundations, additional drainage should be included.
Fotal volume affected by drainage of foundation and hardstanding area (m ³)	5666880	Hardstanding and turbine foundation
I otal volume anected by dramage of foundation and hardstanding area (m.)	0000000	area itself not counted in drained area
Peat affected by drainage of access tracks		because C losses have already been accounted for in removed peat
Floating roads		accounted for in removed peat
ength of floating road that is drained (m)	43005	
Floating road width (m)	9.3	Assumption: Peat under floating road
Average depth of drains associated with floating roads (m)	0.50	also drained when drains are installed
Area affected by drainage of floating roads (m ²)	4698296	
Volume affected by drainage of floating roads (m ³)	2349148 🔶	 Assumption: Depth peat affected due
Excavated Road		drainage is equal to the depth of peat
ength of access track that is excavated road (m)	31510	removed
Excavated road width (m)	9	Note: Road area itself not counted in
Excavated road depth (m)	1.0	drained because C losses have alread been accounted for in removed peat
Area affected by drainage of excavated roads (m ²)	3151000 🔶	 -
Volume affected by drainage of excavated roads (m ³)	3151000 🔨	Assumption: Depth peat affected due
Rock-filled roads		drainage is equal to the depth of peat
ength of rock-filled road that is drained (m)	0	removed
Rock-filled road width (m)	0	Assumption: Peat under rock-filled roa
Average depth of drains associated with rock-filled roads (m)	0.0	is compacted and looses water, but
Area affected by drainage of rock-filled roads (m ²)	0 🔶	 remains anaerobic. Therefore, the are
Volume affected by drainage of rock-filled roads (m ²)	0	of the rock-filled road iteself is not included in the drained area.
Total area affected by drainage of access track (m ²)	7849296	incidueu in the undified area.
Total volume affected by drainage of access track (m ³)	5500148	
		 Assumption: Depth peat affected due
Peat affected by drainage of cable trenches		drainage is equal to the depth of peat removed
ength of any cable trench that does not follow access tracks and is lined with a	5876	
permeable medium (eg. sand) (m)		
Depth of cable trench (m)	0.5	
Total area affected by drainage of cable trenches (m ²)	14690000	
Total volume affected by drainage of cable trenches (m ³)	7345000.00	
Total area affected by drainage due to wind farm (m ²)	26533296	
otal volume affected by drainage due to wind farm (m ³)	19235548	

ote: Note, CO_2 losses are calculated using two approaches: IPCC default cluded because it is the established approach, although it contains no site	methodology and more site sp detail. The new equations have	ecific equations derived for thi	s project. The IPCC methodology is xperimental data for acid boos and fens
ee Nayak et al, 2008 - Final report).	detail. The new equations have	e been derived directly nonne	sperimental data for acid bogs and fens
Number of Land		1	
Drained Land Total area affected by drainage due to wind farm			
construction (ha)	2653		
Will the hydrology of the site be restored on	Yes		
decommissioning?	165		
Will the habitat of the site be restored on decommissioning?	Yes		
Calculations of C Loss from Drained Land if Site is NO	T Postored after Deep	mmiccioning	
Total volume affected by drainage due to wind farm (m ³)	19235548	innissioning	
C Content of dry peat (% by weight)	55		
Dry soil bulk density (g cm ⁻³)	0.60		
Total GHG emissions from Drained Land (t CO ₂	23277129		
equiv.)	20211120		Assumption: Losses of GHG from
Total GHG Emissions from Undrained Land (t CO ₂ equiv.)	1146508	•	drained and undrained land have the same proportion throughout the
-quiv.)		1	emission period.
Calculations of C loss from Drained Land if Site IS Res	tored after Decommis	sioning	
1. Losses if Land is Drained Flooded period (days year ⁻¹)	0	L	Assumption: The drained soil is not
Life time of wind farm (years)	25		flooded at any time of the year.
Time required for regeneration of bog plants after	10		
restoration (years)	10		
Methane Emissions from Drained Land Annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	-0.55		
Conversion factor: CH_4 -C to CO_2 equivalents			Note:Conversion = (23 x 16/12) =
CH_4 emissions from drained land (t CO_2 equivalents	30.67		30.67 CO ₂ equiv. (CH ₄ -C) ⁻¹
Carbon Dioxide Emissions from Drained Land	0		
Annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	18.5		
CO_2 emissions from drained land (t CO_2)	1720127		
Total GHG emissions from Drained Land (t CO ₂		1	
equiv.)	1720127		
2. Losses if Land is Undrained		-	
Flooded period (days year ⁻¹)	178	1	
Life time of wind farm (years)	25		
Time required for regeneration of bog plants after	10		
restoration (years)	-		
Methane Emissions from Undrained Land Annual rate of methane emission (t CH_4 -C ha ⁻¹ yr ⁻¹)	0.50		
Conversion factor: CH_4 -C to CO_2 equivalents	-0.59		Note:Conversion = (23 x 16/12) =
CH_4 emissions from undrained land (t CO_2 equivalents	30.67		30.67 CO ₂ equiv. (CH ₄ -C) ⁻¹
Carbon Dioxide Emissions from Undrained Land	-817561	1	
Annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	19.0		
CO_2 emissions from undrained land (t CO_2)	902285		
Total GHG Emissions from Undrained Land (t CO ₂)			
equiv.)	84724		
2 CO. Leases due to Drainces		-	
3. CO ₂ Losses due to Drainage Total GHG emissions from Drained Land (t CO ₂ equiv.)	1720127	ו	
Total GHG Emissions from Undrained Land (t CO ₂ equiv.)	84724		
Total CO ₂ losses due to Drainage (t CO ₂ equiv.)	1635403]	
	Carbon Dioxide Saving	1	
Wind farm CO ₂ emission saving over	(tCO ₂ yr ⁻¹)		
coal-fired electricity generation	1830665		
grid-mix of electricity generation	915332		
fossil fuel - mix of electricity generation	1292109	l	
Additional CO. naukaaluting studied to a	Additional and a	Additional works	
Additional CO ₂ payback time of wind farm due to drainage of peat	Additional payback time (years)	Additional payback time (months)	
Coal-fired electricity generation	0.89	10.7	
Grid-mix of electricity generation	1.79	21.4	
Fossil fuel - mix of electricity generation	1.27	15.2	

Selected Methodology =	Site specific	
Calculations following IPCC default methodology		
Type of peatland	Acid Bog	
Emission characteristics of acid bogs (IPCC, 1997)		
Flooded period (days year ⁻¹)	178	
Annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.04015	
Annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	35.2	
		Assumption: The period of flooding is
Emission characteristics of fens (IPCC, 1997)		taken to be 178 days yr ⁻¹ for acid bogs
Flooded period (days year ⁻¹)	169	and 169 days yr ⁻¹ based on the monthly mean temperature and the lengths of
Annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.219	inundation (IPCC, 1997, Revised 1996 IPCC
Annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	35.2	guidelines for national greenhouse gas inventories, Vol 3, table 5-13)
Selected emission characteristics (IPCC, 1997)		Assumption: The CH ₄ emission rate
Flooded period (days year ⁻¹)	178	provided for acid bogs is 11 (1-38) mg $CH_4 - C m^2 dav^1 \times 365 days;$ and for
Annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.04015	CH ₄ -C m ⁻¹ day ¹ x 365 days; and for fens is 60 (21-162) mg CH ₄ -C m ⁻² day ¹
Annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	35.2	x 365 days (Aselmann & Crutzen , 1989.
		J.Atm.Chem. 8, 307-358)
Calculations following ECOSSE based methodology		Assumption: CO ₂ emissions on drainage of organic soils for upland
Drained Land Total area affected by drainage due to wind farm construction (ha)	2653	crops (e.g., grain, vegetables) are
Total volume affected by drainage due to wind farm construction (na)	19235548	3.667x9.6 (7.9-11.3) t CO ₂ ha ⁻¹ yr ⁻¹ in
	19235340	temperate climates (Armentano and Menges, 1986. J. Ecol. 74, 755-774).
Soil Characteristics that Determine Emission Rates		
Average annual air temperature at the site (°C)	7	
Average depth of peat at site (m)	1.60	
Average soil pH	4	Note: Equation derived by regression analysis against experimental data from 50 experiments. 41 ca
Average water table depth at site (cm) Average water table depth of drained land (m)	0.75	were used and 9 included missing data values. The equation derived was
Average water table depth of drained land (m)	0.724958857	$R_{CO2} = (3.667/1000) \times (547 + (71.7 T) + (322 D) + (4810 W))$
Annual Emission Rates following ECOSSE based methodology		where R_{CO2} is the annual rate of CO ₂ emissions (t CO ₂ (ha) ⁻¹ yr ⁻¹), T = average annual air temperature D is the peat depth (m), and W is the water table depth (m).
Rate of carbon dioxide emission in drained soil (t CO_2 ha ⁻¹ yr ⁻¹)	18.52	The equation has a R ² value of 53.8%, P < 0.0001. By statistical convention, if P<0.001 this relationsh
Rate of carbon dioxide emission in undrained soil (t CO_2 ha ⁻¹ yr ⁻¹)	18.96	be considered to be highly significant.
Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	-0.55	Note: Equation derived by regression analysis against experimental data from 66 experiments. 40 ca
Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	-0.59	were used and 26 included missing data values. The equation derived was R _{CH4} = (3.667/1000) × (58.4 + (3.11 <i>T</i>) + (16.7 <i>p</i> H) - (410 <i>W</i>))
Colorida Emission Dates		where R_{CH4} is the annual rate of CH ₄ emissions (t CO ₂ (ha) ⁻¹ yr ⁻¹), T = average annual air temperatur <i>pH</i> is the soil pH and <i>W</i> is the water table depth (m).
Selected Emission Rates Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	10.50	pr is the solit pri and w is the water table depth (m). The equation has a R^2 value of 52.7%, P <0.0001. By statistical convention, if P<0.001 this relationsh
	18.52	be considered to be highly significant.
Rate of carbon dioxide emission in undrained soil (t CO_2 ha ⁻¹ yr ⁻¹)	18.96	
Rate of methane emission in drained soil ((t CH_4 -C) ha ⁻¹ yr ⁻¹)	-0.55	
Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	-0.59	

Total C loss		
Gross CO ₂ loss from removed peat (t CO ₂)	1885395	
Gross CO ₂ loss from drained land (t CO ₂)	817842	
Gross CH ₄ loss from drained land (t CO ₂ equiv.)	817561	
Gross CO ₂ loss from improved land (t CO ₂)	57386	Assumption: The export from temperate and boreal
Gross CH ₄ loss from flooded land (t CO ₂ equiv.)	0	peatlands ranges between 10 and 500 kg DOC ha ⁻¹ yr ⁻¹ ¹ (Dillon, P.J. and Molot, L.A. (1997) Water Resources Research 33,
Conversion factor: CH ₄ -C to CO ₂ equivalents	30.6667	2591-2600), which typically represents around 10% of the
% total soil C losses, lost as DOC	10	total C release.
% DOC loss emitted as CO ₂ over the long term	100	Assumption: In the long term, 100% of leached DOC is assumed to be lost as CO ₂
% total soil C losses, lost as POC	15	assumed to be lost as CO ₂
% POC loss emitted as CO ₂ over the long term	100	Assumption: The export from temperate and boreal
Total gaseous loss of C (t C)	761553	peatlands ranges between 12 and 15% of the total
Total C loss as DOC (t C)	76155	gaseous C loss (Worrall, F., Reed, M., Warburton, J., Burt, T., 2003. Carbon budget for a British upland peat catchment. The Science of the Tota
Total C loss as POC (t C)	114233	Environment, 312, 133–146.) Tables 1 and 2.
Tatal CO, loss due to DOC loss bing (t CO)	070700	┓ \ └────
Total CO ₂ loss due to DOC leaching (t CO ₂)	278728	Assumption: In the long term, 100% of leached DOC is
Total CO ₂ loss due to POC leaching (t CO ₂)	418092	assumed to be lost as CO ₂
Total CO ₂ loss due to DOC & POC leaching (t CO ₂)	696821	

Note: Note, CO2 losses from DOC are calculated using a simple approach derived from estimates of the total C loss leached as DOC and the percentage of leached DOC lost as CO2

	Carbon Dioxide Saving
Wind farm CO ₂ emission saving over	(tCO ₂ yr ⁻¹)
coal-fired electricity generation	1830665
grid-mix of electricity generation	915332
fossil fuel - mix of electricity generation	1292109

Additional CO_2 payback time of wind farm due to DOC and POC leaching	Additional payback time (years)	Additional payback time (months)
Coal-fired electricity generation	0.38	4.6
Grid-mix of electricity generation	0.76	9.1
Fossil fuel - mix of electricity generation	0.54	6.5

Note: Emissions due to forestry felling are calculated from the reduced carbon sequestered per crop rotation. If the forestry was due to be removed before the planned development, this C loss is not attributable to the wind farm and so the area of forectry to be felled should be entered as zero.

Emissions due to forestry felling	
Area of forestry plantation to be felled (ha)	0
Carbon sequestered (tC ha ⁻¹ yr ⁻¹)	0
Life time of wind farm (years)	25
Carbon sequestered over the lifetime of the wind farm (t C ha ⁻¹)	0
Total carbon loss due to felling of forestry (t CO ₂)	0

Wind farm CO ₂ emission saving over	Carbon dioxide saving (tCO ₂ yr ⁻¹)
coal-fired electricity generation	1830665
grid-mix of electricity generation	915332
fossil fuel - mix of electricity generation	1292109

Additional CO ₂ payback time of wind farm due to felling of forestry	Additional payback time (yr)	Additional payback time (months)	
Coal-fired electricity generation	0.00	0.0	
Grid-mix of electricity generation	0.00	0.0	
Fossil fuel - mix of electricity generation	0.00	0.0	

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

Choice of methodology for calculating emission factors Site specific

Improvement of	Degraded Bog	Felled Forestry	Borrow Pits	Foundations &
I. Description of site				Hardstanding
Life time of wind farm (years)	25	25	25	25
Area to be improved (ha)	394	0	15.19	354
Average air temperature at site (°C)	7	7	7	7
Average soil pH	4	4	4	4
Average depth of peat at site (m)	1.60	1.60	1.60	1.60
Nater table depth before improvement (m)	0.75	0.00	1.60	1.60
Nater table depth after improvement (m)	0.75	0.00	0.75	0.75
2. Losses with improvement				
Flooded period (days year ⁻¹)	178	178	178	178
Fime required for hydrology and habitat to return to its previous state on	10	0	10	25
estoration (years)		-	-	-
mproved period (years)	15	25	15	0
Methane emissions from improved land				
Site specific annual rate of methane emission (t CO ₂ ha ⁻¹ yr ⁻¹)	-18.05	16.53	-18.05	-18.05
PCC annual rate of methane emission (t CO ₂ ha ⁻¹ yr ⁻¹)	1.23	1.23	1.23	1.23
Selected annual rate of methane emission (t CO ₂ ha ⁻¹ yr ⁻¹)	-18.05	16.53	-18.05	-18.05
CH ₄ emissions from improved land (t CO ₂ equiv.)	-52029	0	-2006	0
Carbon dioxide emissions from improved land				
Site specific annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	19.0	5.7	19.0	19.0
PCC annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	35.2	35.2	35.2	35.2
Selected annual rate of carbon dioxide emission (t CO_2 ha ⁻¹ yr ⁻¹)	19.0	5.7	19.0	19.0
CO_2 emissions from improved land (t CO_2)				
Fotal GHG emissions from improved land (t CO ₂)	57421	0	2214	0
	5392	0	208	0
3. Losses without improvement	<u>^</u>	•		0
Flooded period (days year ⁻¹)	0	0	0	0
Fime required for hydrology and habitat to return to its previous state on restoration (years)	10	0	10	25
mproved period (years)	15	25	15	0
Methane emissions from unimproved land	10	20	10	U
Site specific annual rate of methane emission (t CO_2 ha ⁻¹ yr ⁻¹)	-18.05	16.53	-57.24	-57.24
PCC annual rate of methane emission (t CO_2 ha ⁻¹ yr ⁻¹)	1.23	1.23	1.23	1.23
Selected annual rate of methane emission (t OO_2 ha ⁻¹ yr ⁻¹)	-		-	-
	-18.05	16.53	-57.24	-57.24
CH ₄ emissions from unimproved land (t CO ₂ equiv.)	0	0	0	0
Carbon dioxide emissions from unimproved land				
Site specific annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	19.0	5.7	34.0	34.0
PCC annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	35.2	35.2	35.2	35.2
Selected annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	19.0	5.7	34.0	34.0
CO ₂ emissions from unimproved land (t CO ₂)	112079	0	7737	0
Total GHG emissions from unimproved land (t CO ₂ equiv.)	112079	0	7737	0
. Reduction in GHG emissions due to improvement of site			-	-
	5392	0	208	0
Total GHG emissions from improved land (t CO ₂ equiv.) Total GHG emissions from unimproved land (t CO ₂ equiv.)	112079	0	7737	0

Reduction in CO₂ payback time of wind farm due improvement of site

	Carbon Dioxide
Wind farm CO ₂ emission saving over	Saving (tCO ₂ yr ⁻¹)
coal-fired electricity generation	1830665
grid-mix of electricity generation	915332
fossil fuel - mix of electricity generation	1292109

Reduction in CO_2 payback time of wind farm due improvement of	Degraded Bog	Felled Forestry	Borrow Pits	Foundations & Hardstanding	Total
	Reduction in payback time (years)				
Coal-fired electricity generation	0.06	0.00	0.00	0.00	0.06
Grid-mix of electricity generation	0.12	0.00	0.01	0.00	0.12
Fossil fuel - mix of electricity generation	0.08	0.00	0.01	0.00	0.09
	Reduction in payback time (months)				
Coal-fired electricity generation	0.70	0.00	0.05	0.00	0.75
Grid-mix of electricity generation	1.40	0.00	0.10	0.00	1.50
Fossil fuel - mix of electricity generation	0.99	0.00	0.07	0.00	1.06